Abstract

New boundary conditions are constructed and tested numerically for a general first-order form of the Einstein evolution system. These conditions prevent constraint violations from entering the computational domain through timelike boundaries, allow the simulation of isolated systems by preventing physical gravitational waves from entering the computational domain, and are designed to be compatible with the fixed-gauge evolutions used here. These new boundary conditions are shown to be effective in limiting the growth of constraints in 3D nonlinear numerical evolutions of dynamical black-hole spacetimes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call