Abstract

The problem of plane-wave diffraction on semi-infinite orthorhombic electromagnetic (photonic) crystals of general kind is considered. Boundary conditions are obtained in the form of infinite system of equations relating amplitudes of incident wave, eigenmodes excited in the crystal and scattered spatial harmonics. Generalized Ewald-Oseen extinction principle is formulated on the base of deduced boundary conditions. The knowledge of properties of infinite crystal's eigenmodes provides option to solve the diffraction problem for the corresponding semi-infinite crystal numerically. In the case when the crystal is formed by small inclusions which can be treated as point dipolar scatterers with fixed direction the problem admits complete rigorous analytical solution. The amplitudes of excited modes and scattered spatial harmonics are expressed in terms of the wave vectors of the infinite crystal by closed-form analytical formulae. The result is applied for study of reflection properties of metamaterial formed by cubic lattice of split-ring resonators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call