Abstract

We show that mode jumping in the buckling of a rectangular plate may be explained by a secondary bifurcation — as suggested by Bauer et al. [1] — when “clamped” boundary conditions on the vertical displacement function are assumed. In our analysis we use the singularity theory of mappings in the presence of a symmetry group to analyse the bifurcation equation obtained by the Lyapunov-Schmidt reduction applied to the Von Kármán equations. Noteworthy is the fact that this explanation fails when the assumed boundary conditions are “simply supported”.Mode jumping in the presence of “clamped” boundary conditions was observed experimentally by Stein [9]; “simply supported” boundary conditions are frequently studied but are difficult — if not impossible — to realize physically. Thus, it is important to observe that the qualitative post-buckling behavior depends on which idealization for the boundary conditions one chooses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.