Abstract

We study the supersymmetric Wilson loops in the four-dimensional N=4 super Yang-Mills theory in the context of AdS/CFT correspondence. In the gauge theory side, it is known that the expectation value of the Wilson loops of circular shape with winding number k, W{sub k}(C), is calculable by using a Gaussian matrix model. In the gravity side, the expectation value of the loop is conjectured to be given by the classical value of the action S{sub D3} for a probe D3-brane with k electric fluxes as =e{sup -S{sub D3}}. Given such correspondence, we pursue the interpretation of the matrix model eigenvalue density, or more precisely the resolvent, from the viewpoint of the probe D3-brane. We see that the position of an eigenvalue appears as the gauge field plus the scalar field integrated over the boundary of the probe D3-brane. In the course of our analysis, we also clarify the boundary condition on the D3-brane in terms of the Wilson loop.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call