Abstract

There is an increasing interest in experimental analysis of in-operation structures where a part of the boundary conditions is poorly known. This concerns particularly the case of coupled systems where some complex physical phenomena make the behaviour of both the system and its connectivity dependent on the functioning conditions. In this context, this paper presents a new frequency approach for parametric structural updating in the vibration and acoustic fields. This methodology is developed here in the case of piping systems. It follows the boundary conditions identification method previously developed by the authors. A boundary conditions error is presented and its efficiency to translate structural parameters error is shown. Thus, the proposed approach allows performing the identification of some unknown boundary conditions and, simultaneously, updating the model of the tested structure. The pertinence of a frequency choice criteria based on the smallest singular value of the solved system during the identification of the boundary conditions is shown. It specifically allows avoiding the bands of critical frequencies. The developed updating technique is tested with two actual cases: a laboratory test case and an industrial example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.