Abstract

In computer simulations of water between hydrophobic walls the results exhibit a strong dependence upon the boundary conditions applied. With the minimum image (MI) convention the water molecules tend to be orientationally ordered throughout the simulation cell (Valleau, J. P., and Gardner, A. A., 1987, J. chem. Phys., 86, 4162) whereas, if a spherical cut-off (SC) is applied, strong orientational order is found only in the immediate vicinity of the surface (Lee, C. Y., McCammon, J. A., and Rossky, P. J., 1984, J. chem. Phys., 80, 4448). These conflicting observations have remained unresolved, and clearly raise troubling questions concerning the validity of simulation results for water between surfaces of all types. In the present paper we explore this problem by carrying out a detailed analysis of the results obtained with various types of boundary condition. These include Ewald calculations carried out with a central simulation cell adapted to describe the slab geometry of interest. It is shown that the...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.