Abstract

A function denned in a domain D is n-valent in D if f(z) — w0 has at most n zeros in D for each complex number w0. Let denote the class of nonconstant, holomorphic functions f in the unit disc that are n-valent in each component of the set . MacLane's class is the class of nonconstant, holomorphic functions in the unit disc that have asymptotic values at a dense subset of |z| = 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.