Abstract

This paper presents an eigenvalue formulation for the vibration analysis of symmetrically laminated rectangular plates subjected to translational and rotational restraints at the edges. The Rayleigh-Ritz method, along with the deflection functions assumed in sets of orthogonally generated polynomials, is used to perform the analysis. The total strain energy of the elastically restrained rectangular plate is the sum of the bending strain energy and elastic strain energy of translational and rotational restraints. This resulting strain energy combined with the kinetic energy of the plate formed the total energy functional which is minimized to obtain the governing eigenvalue equation of the elastically restrained symmetrically laminated rectangular plate. In this paper, several examples of elastically restrained laminated plates with different fiber orientation angles and stacking sequences have been solved to demonstrate the accuracy and efficiency of the present method. The combined effects of laminate stacking sequences, fiber orientation angle and translational and rotational stiffnesses of the elastic edges on the vibrational response have been carefully examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.