Abstract

A multi-scale friction model for large-scale forming simulations is presented. A framework has been developed for the boundary and mixed lubrication regime, including the effect of surface changes due to normal loading, sliding and straining the underlying bulk material. Adhesion and ploughing effects have been accounted for to characterize friction conditions on the micro scale. To account for the lubricant effects special hydrodynamic contact elements have been developed. Pressure degrees of freedom are introduced to capture the pressure values which are computed by a finite element discretization of the 2D averaged Reynolds equations. The boundary friction model and the hydrodynamic friction model have been coupled to cover the boundary and mixed lubrication regime. To prove the numerical efficiency of the multi-scale friction model, finite element simulations have been carried out on a top hat section. The computed local friction coefficients show to be dependent on the punch stroke, punch speed and location in the product, and are far from constant. The location and range of friction coefficient values are in the order of what to expect from practice. The agreement between the numerical results and the experiments for different lubrication types and amount of lubrication is good. The multi-scale friction model proves to be stable, and compared to a Coulomb-based FE simulation, with only a modest increase in computation time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.