Abstract

The stability of natural convection in a fluid-saturated vertical anisotropic porous layer is investigated. The vertical rigid walls of the porous layer are maintained at different constant temperatures, and anisotropy in both permeability and thermal diffusivity is considered. The flow in the porous medium is described by the Lapwood–Brinkman model, and the stability of the basic flow is analysed numerically using Chebyshev collocation method. The presence of inertia is to inflict instability on the system and in the absence of which the system is always found to be stable. The mechanical and thermal anisotropies exhibit opposing contributions on the stability characteristics of the system. The mode of instability is interdependent on the values of Prandtl number and thermal anisotropy parameter, while it remains unaltered with the mechanical anisotropy parameter. The effect of increasing Prandtl and Darcy numbers shows a destabilizing effect on the system. Besides, simulations of secondary flow and energy spectrum have been analysed for various values of physical parameters at the critical state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.