Abstract

We study the Poisson boundary ($\equiv$ representation of bounded harmonic functions) of Markov operators on discrete state spaces that are invariant under the action of a transitive group of permutations. This automorphism group is locally compact, but not necessarily discrete or unimodular. The main technical tool is the entropy theory which we develop along the same lines as in the case of random walks on countable groups, while, however, the implementation is different and exploits discreteness of the state space on the one hand and the path space of the induced random walk on the nondiscrete group on the other. Various new examples are given as applications, including a description of the Poisson boundary for random walks on vertex-transitive graphs with infinitely many ends and on the Diestel-Leader graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.