Abstract

Task-specific dystonia leads to loss of sensorimotor control for a particular motor skill. Although focal in nature, it is hugely disabling and can terminate professional careers in musicians. Biomarkers for underlying mechanism and severity are much needed. In this study, we designed a keyboard device that measured the forces generated at all fingertips during individual finger presses. By reliably quantifying overflow to other fingers in the instructed (enslaving) and contralateral hand (mirroring) we explored whether this task could differentiate between musicians with and without dystonia. 20 right-handed professional musicians (11 with dystonia) generated isometric flexion forces with the instructed finger to match 25%, 50% or 75% of maximal voluntary contraction for that finger. Enslaving was estimated as a linear slope of the forces applied across all instructed/uninstructed finger combinations. Musicians with dystonia had a small but robust loss of finger dexterity. There was increased enslaving and mirroring, primarily during use of the symptomatic hand (enslaving p = 0.003; mirroring p = 0.016), and to a lesser extent with the asymptomatic hand (enslaving p = 0.052; mirroring p = 0.062). Increased enslaving and mirroring were seen across all combinations of finger pairs. In addition, enslaving was exaggerated across symptomatic fingers when more than one finger was clinically affected. Task-specific dystonia therefore appears to express along a gradient, most severe in the affected skill with subtle and general motor control dysfunction in the background. Recognition of this provides a more nuanced understanding of the sensorimotor control deficits at play and can inform therapeutic options for this highly disabling disorder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call