Abstract

We study the relations between boundaries for algebras of holomorphic functions on Banach spaces and complex convexity of their balls. In addition, we show that the Shilov boundary for algebras of holomorphic functions on an order continuous sequence space $X$ is the unit sphere $S_X$ if $X$ is locally c-convex. In particular, it is shown that the unit sphere of the Orlicz-Lorentz sequence space $\lambda_{\varphi, w}$ is the Shilov boundary for algebras of holomorphic functions on $\lambda_{\varphi, w}$ if $\varphi$ satisfies the $\delta_2$-condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.