Abstract

We study BPS bound states of little strings in a limit where they realise monopole strings in five dimensional gauge theories. The latter have gauge group $U(M)^N$ and arise from compactification of $(1,0)$ little string theories of type $A_{M-1} \times A_{N-1}$. We find evidence that the partition function of a certain subclass of monopole strings of charge $(k,\ldots,k)$ ($k\geq 1$) is expressible as the partition function of a symmetric orbifold sigma model, whose target space is precisely the symmetric product of the moduli space of monopoles with charge $(1, \ldots, 1)$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.