Abstract
We investigate the diffraction of guided modes of a dielectric slab waveguide on a simple integrated structure consisting of a single dielectric ridge on the surface of the waveguide. Numerical simulations based on aperiodic rigorous coupled-wave analysis demonstrate the existence of sharp resonant features and bound states in the continuum (BICs) in the reflectance and the transmittance spectra occurring at oblique incidence of a TE-polarized guided mode on the ridge. Using the effective index method, we explain the resonances by the excitation of the cross-polarized modes of the ridge. The formation of the BICs is confirmed using a theoretical model based on the coupled-wave theory. The model suggests that the BICs occur due to coupling of quasi-TE and quasi-TM modes of the structure. Simple analytical expressions for the angle of incidence and the ridge width predicting the location of the BICs are obtained. The existence of high-Q resonances and BICs makes the considered integrated structure promising for filtering, sensing, transformation of optical signals, and enhancing nonlinear light-matter interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.