Abstract

We establish a general framework for studying the bound states and the photon-emission dynamics of quantum emitters coupled to structured nanophotonic lattices with engineered dissipation (loss). In the single-excitation sector, the system can be described exactly by a non-Hermitian formalism. We have pointed out in the accompanying letter [Gong \emph{et al}., arXiv:2205.05479] that a single emitter coupled to a one-dimensional non-Hermitian lattice may already exhibit anomalous behaviors without Hermitian counterparts. Here we provide further detail on these observations. We also present several additional examples on the cases with multiple quantum emitters or in higher dimensions. Our work unveils the tip of the iceberg of the rich non-Hermitian phenomena in dissipative nanophotonic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.