Abstract
In this paper, the bound state solution of the modified Klein–Fock–Gordon equation is obtained for the Hulthén plus ring-shaped-like potential by using the developed scheme to overcome the centrifugal part. The energy eigenvalues and corresponding radial and azimuthal wave functions are defined for any [Formula: see text] angular momentum case on the conditions that scalar potential is whether equal and nonequal to vector potential, the bound state solutions of the Klein–Fock–Gordon equation of the Hulthén plus ring-shaped-like potential are obtained by Nikiforov–Uvarov (NU) and supersymmetric quantum mechanics (SUSY QM) methods. The equivalent expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transformations to each other is revealed owing to both methods. The energy levels and the corresponding normalized eigenfunctions are represented in terms of the Jacobi polynomials for arbitrary [Formula: see text] states. A closed form of the normalization constant of the wave functions is also found. It is shown that the energy eigenvalues and eigenfunctions are sensitive to [Formula: see text] radial and [Formula: see text] orbital quantum numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.