Abstract

Bound-state vector soliton solutions for the coupled variable-coefficient higher-order nonlinear Schrödinger equations, which describe the simultaneous propagation of nonlinear waves in the inhomogeneous optical fiber, are investigated. Introducing auxiliary functions, we derive the bilinear forms and corresponding constraints on the variable coefficients. Through symbolic computation, we construct the one- and two-soliton solutions. We see that the variable coefficients in the equations affect the soliton structures. With different choices of the variable coefficients, we obtain the cubic, periodic, and parabolic solitons. Bound-state solitons and interactions are analyzed graphically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.