Abstract
This paper aims to develop numerical approximations of the Keller–Segel equations that mimic at the discrete level the lower bounds and the energy law of the continuous problem. We solve these equations for two unknowns: the organism (or cell) density, which is a positive variable, and the chemoattractant density, which is a non-negative variable. We propose two algorithms, which combine a stabilized finite element method and a semi-implicit time integration. The stabilization consists of a nonlinear artificial diffusion that employs a graph-Laplacian operator and a shock detector that localizes local extrema. As a result, both algorithms turn out to be nonlinear and can generate cell and chemoattractant numerical densities fulfilling lower bounds. However, the first algorithm requires a suitable constraint between the space and time discrete parameters, whereas the second one does not. We design the latter to attain a discrete energy law on acute meshes. We report some numerical experiments to validate the theoretical results on blowup and nonblowup phenomena. In the blowup setting, we identify a locking phenomenon that relates the [Formula: see text]-norm to the [Formula: see text]-norm limiting the growth of the singularity when supported on a macroelement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Models and Methods in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.