Abstract

There has been considerable interest in characterizing the polymer layer that is effectively irreversibly bound to nanoparticles (NPs) because it is thought to underpin the unusual thermomechanical properties of polymer nanocomposites (PNC). We study PNCs formed by mixing silica nanoparticles (NPs) with poly-2-vinylpyridine (P2VP) and compare the bound layer thickness δ determined by three different methods. We show that the thickness obtained by thermogravimetric analysis (TGA) and assuming that the bound layer has a density corresponding to a dense melt clearly underestimates the real bound layer thickness. A more realistic extent of the bound layer is obtained by in situ measurements of the interaction pair potential between NPs in PNCs via analysis of TEM micrographs; we verify these estimates using Dynamic Light Scattering (DLS) in θ solvent. Our results confirm the existence of long-ranged interactions between NPs corresponding roughly in size to the radius of gyration of the bound chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.