Abstract

Using the negativity as an entanglement measure, we investigate the possible amount of remotely prepared entanglement. For two identical isotropic states on two-qudit systems 12 and 34, we calculate the average amount of entanglement remotely distributed on the system 13 by joint measurement on the system 24, and show that the remote preparation of entanglement by the generalized Bell-measurement is optimal among rank-one measurements if the isotropic states have a certain fidelity with a maximally entangled state in higher dimensional quantum systems, or if the fidelity of the isotropic states is greater than a certain value depending on the dimension. In addition, we construct a measurement better than the generalized Bell-measurement with respect to the remote preparation of entanglement when the isotropic states have small fidelity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.