Abstract

A new general critical excitation method is developed for a damped linear elastic single-degree-of-freedom structure. In contrast to previous studies considering amplitude nonstationarity only, no special constraint of input motions is needed on nonstationarity. The input energy to the structure during an earthquake is introduced as a new measure of criticality. It is shown that the formulation of earthquake input energy in the frequency domain is essential for solving the critical excitation problem and deriving a bound on the earthquake input energy for a class of ground motions. It is remarkable that no mathematical programming technique is required in the solution procedure. This enables structural engineers to use the method in their structural design practice without difficulty. The constancy of earthquake input energy for various natural periods and damping ratios is discussed based on an original sophisticated mathematical treatment. Through numerical examinations for four classes of recorded ground motions, the bounds under acceleration and velocity constraints (time integral of the squared base acceleration and time integral of the squared base velocity) are clarified to be meaningful in the short and intermediate/long natural period ranges, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call