Abstract
It is important to find feasible measurement bounds for quantum information protocols. We present analytic bounds for quantum illumination with Gaussian states when using an on-off detection or a photon number resolving (PNR) detection, where its performance is evaluated with signal-to-noise ratio. First, for coincidence counting measurement, the best performance is given by the two-mode squeezed vacuum (TMSV) state which outperforms the coherent state and the classically correlated thermal (CCT) state. However, the coherent state can beat the TMSV state with increasing signal mean photon number in the case of the on-off detection. Second, the performance is enhanced by taking Fisher information approach with all counting probabilities including non-detection events. In the Fisher information approach, the TMSV state still presents the best performance but the CCT state can beat the TMSV state with increasing signal mean photon number in the case of the on-off detection. Furthermore, we show that it is useful to take the PNR detection on the signal mode and the on-off detection on the idler mode, which reaches similar performance of using PNR detection on both modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.