Abstract

A concept of Ca2+ nanodomains established in the cytoplasm after opening single-calcium channels helps mechanistically understand the physiological mechanisms of Ca2+ signaling. It predicts standing gradients of cytoplasmic free Ca2+ around single channels in the plasma membrane. The fate of bound Ca2+ attracted much less attention. This study aimed to examine the profiles of Ca2+ bound to low-mobility buffers such as bulky Ca2+-binding proteins. The solution of non-linear PDEs for an immobile buffer predicts fast decay of free [Ca2+] from the channel lumen and the traveling wave for bound Ca2+. For low-mobility buffers like calmodulin, the calculated profiles of free and bound Ca2+ are similar. Theoretical predictions are tested by imaging 1D profiles of Ca2+ bound to low-mobility fluo-4-dextran. The traveling waves of bound Ca2+ are observed that develop during the opening of single channels. The findings tempt to propose that Ca2+ signaling may not be solely related by the absolute free [Ca2+] at the sensor location, which is extremely localized, but determined by the time when a wave of bound Ca2+ reaches a threshold needed for sensor activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.