Abstract
We investigate dynamic properties of bouncing and penetration in colliding binary and ternary Bose-Einstein condensates comprised of different Zeeman or hyperfine states of 87Rb. Through the application of magnetic field gradient pulses, two- or three-component condensates in an optical trap are spatially separated and then made to collide. The subsequent evolutions are classified into two categories: repeated bouncing motion and mutual penetration after damped bounces. We experimentally observed mutual penetration for immiscible condensates, bouncing between miscible condensates, and domain formation for miscible condensates. From numerical simulations of the Gross-Pitaevskii equation, we find that the penetration time can be tuned by slightly changing the atomic interaction strengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.