Abstract
We investigated the interaction of CO with graphene/Ni(111) and the Boudouard reaction at 3.7 mbar by Near Ambient Pressure X-Ray Photoemission Spectroscopy (NAPXPS), i.e. at one order of magnitude higher pressure than previously explored in-operando conditions. In this regime, CO intercalates under the graphene layer causing its partial detachment from the Ni substrate. The so-obtained high local CO coverage opens the way to CO2 formation via the Boudouard reaction. Its onset is witnessed by observing physisorbed CO2 accumulating below the graphene cover. The so-generated additional carbon atoms transform carbide into graphene, causing the expansion of the graphene islands. In addition, CO adsorption occurs on the strongly interacting areas of the graphene layer, confirming previous results obtained by some of us at low temperatures and in ultra-high vacuum conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.