Abstract

Botulinum toxin type A (BoNT/A) reversibly blocks neurotransmission at voluntary and autonomic cholinergic nerve terminals, inducing paralysis. The aim of this study was to block panenteric peristalsis in rats through BoNT/A administration into the superior mesenteric artery (SMA) and to understand whether the toxin's action is selectively restricted to the perfused territory. Rats were infused through a 0.25-mm surgically inserted SMA catheter with different doses of BoNT/A (10 U, 20 U, 40 U BOTOX®, Allergan Inc.) or with saline for 24 h. Animals were free to move on an unrestricted diet. As a sign of bowel peristalsis impairment, body weight and oral/water intake were collected for 15 days. Statistical analysis was conducted with nonlinear mixed effects models to study the variation over time of the response variables. In three 40 U-treated rats, the selectivity of the intra-arterial delivered toxin action was studied by examining bowel and voluntary muscle samples and checking the presence of BoNT/A-cleaved SNAP-25 (the smoking gun of the toxin action) using the Immunofluorescence (IF) method through a specific antibody recognition. While control rats exhibited an increasing body weight, treated rats showed an initial dose-dependent weight reduction (p<0.001 control vs. treated) with recovery after Day 11 for 10 and 20 U-treated rats. Food and water intake over time showed significantly different half-saturation constants with rats treated with higher doses who reached half of the maximum achievable in a greater number of days (p<0.0001 control vs. treated rats). BoNT/A-cleaved SNAP-25 was identified in bowel wall NMJs and not in voluntary muscles, demonstrating the remarkable selectivity of arterially infused BoNT/A. Blockade of intestinal peristalsis, can be induced in rats by slow infusion of BoNT/A into the SMA. The effect is long-lasting, dose-dependent and selective. BoNT/A delivery into the SMA through a percutaneous catheter could prove clinically useful in the treatment of entero-atmospheric fistula by temporarily reducing fistula output.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.