Abstract
Botulinum neurotoxin (NT) is a potent inhibitor of neurotransmitter secretion, but its intracellular mechanism and site of action are unknown. In this study, the intracellular action of NT was investigated by rendering the secretory apparatus of PC12 cells accessible to macromolecules by a recently described "cell cracking" procedure. Soluble cytoplasmic factors were depleted from permeabilized cells by washing to generate cell "ghosts" which retained cellular structural components and intracellular organelles (including secretory granules). The PC12 cell ghosts exhibited Ca(2+)-activated [3H]norepinephrine release which was enhanced by cytosolic proteins and MgATP. PC12 cell ghosts provide the opportunity to distinguish the intracellular action of NT on soluble cytoplasmic components versus structural cellular components. The 150-kDa NT and the 50-kDa light chain of serotypes E and B, and to a lesser extent type A, inhibited Ca(2+)-activated [3H]norepinephrine release in PC12 ghosts, but not in intact PC12 cells. The 100-kDa heavy chain had no effect. This indicates that NT acts at an intracellular site in these cells permeabilized by "cell cracking." The inhibition of secretion by NT was rapid and irreversible under the incubation conditions used. NT inhibition of [3H]-norepinephrine release from PC12 ghosts occurred in the absence of cytosolic proteins and MgATP and was not reversed by the addition of cytosolic proteins and MgATP, indicating that NT acts at an intracellular membranous or cytoskeletal site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.