Abstract

Here we report an effective bottom-up solution-phase process for the preparation of nitrogen-doped porous carbon scaffolds (NPCSs), which can be employed as high-performance anode materials for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). The as-obtained NPCSs show favorable features for electrochemical energy storage such as high specific surface area, appropriate pore size distribution (3.9 nm in average), large pore volume (1.36 cm3 g-1), nanosheet-like morphology, a certain degree of graphitization, enlarged interlayer distance (0.38 nm), high content of nitrogen (∼5.6 at%) and abundant electrochemically-active sites. Such a unique architecture provides efficient Li+/Na+ reservoirs, and also possesses smooth electron transport pathways and electrolyte access. For LIBs, the anodes based on NPCSs deliver a high reversible capacity of 1275 mA h g-1 after 250 cycles at 0.5 C (1 C = 372 mA g-1), and outstanding cycling stabilities with a capacity of 518 mA h g-1 after 500 cycles at 5 C and 310 mA h g-1 after 1500 cycles even at 10 C. For SIBs, the anodes based on NPCSs display a reversible capacity of 257 mA h g-1 at 50 mA g-1, and superior long-term cycling performance with a capacity of 191 mA h g-1 after 1000 cycles at 200 mA g-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.