Abstract

In this proceedings contribution I review recent progress concerning the suppression of bottomonium production in the quark-gluon plasma. Making use of open quantum system methods applied to potential non-relativistic quantum chromodynamics one can show that the dynamics of heavy-quarkonium bound states satisfying the scale hierarchy 1/a0 » πT ∼ mD » E obey a Lindblad equation whose solution provides the quantum evolution of the heavy-quarkonium reduced density matrix. To solve the resulting Lindblad equation we use a quantum trajectories algorithm which allows one to include all possible angular momentum states of the quark-antiquark probe in a scalable manner. We solve the Lindblad equation using a tuned 3+1D dissipative hydrodynamics code for the background temperature evolution. We then consider a large number of Monte-Carlo sampled bottomonium trajectories embedded in this background. This allows us to extract the centrality- and pT-dependence of the nuclear suppression factor RAA[Υ] and elliptic flow v2[Υ]. We find good agreement between our model predictions and available √ sNN = 5.02 TeV = 5.02 TeV Pb-Pb collision experimental data from the ALICE, ATLAS, and CMS collaborations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.