Abstract

AbstractThe fabrication of sulfur‐containing carbonaceous anode materials (CS) that show exceptional activity as anode material in Na‐ions batteries is reported. To do so, a general and straightforward bottom‐up synthesis of CS materials with precise control over the sulfur content and functionality is introduced. The new synthetic path combined with a detailed structural analysis and electrochemical studies provide correlations between i) the sulfur content and chemical species and ii) the structural, electronic, and electrochemical performance of the associated materials. As a result, the new CS substances demonstrate excellent activity as Na‐ion battery anode materials, reaching capacity values above 500 mAh g−1 at a current density of 0.1 A g−1, as well as high reversible sodium storage capabilities and excellent cycling durability. The results reveal the underlying working principles of carbonaceous materials, alongside the storage mechanism of the Na+ ions in these advanced sodium‐ion battery anode materials and provide a new avenue for their practical realization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call