Abstract
The manipulation of molecular motions to construct highly ordered supramolecular architectures from chaos in the solid state is considered to be far more complex and challenging in comparison to that in solution. In this work, a bottom-up molecular assembly approach based on a newly designed skeleton-trimmed pillar[5]arene analogue, namely the permethylated leggero pillar[5]arene MeP[5]L, is developed in the solid state. An amorphous powder of MeP[5]L can take up certain guest vapors to form various ordered linker-containing solid-state molecular assemblies, which can be further used to construct a thermodynamically favored linker-free superstructure upon heating. These approaches are driven by vapor-induced solid-state molecular motions followed by a thermally triggered phase-to-phase transformation. The intermolecular interactions play a crucial role in controlling the molecular arrangements in the resulting assemblies. This research will open new insights into exploring controllable molecular motions and assemblies in the solid state, providing new perspectives in supramolecular chemistry and materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.