Abstract

A high organic content CE-MS/MS (HOCE-MS/MS) method was developed for the proteomic analysis of envelope proteins extracted from spinach leaves. Separation was performed in a 1-m long hydroxypropyl cellulose coated capillary, using 8% (v/v) formic acid in 70% (v/v) methanol and 22% water as the BGE. A flow-through microvial interface was used to couple the CE system with an Orbitrap Fusion Lumos mass spectrometer, and field-amplified sample stacking was used to improve the concentration sensitivity. Using this optimized method, 3579 peptides and 1141 proteins were identified using the Proteome Discoverer software with a 1% false discovery rate at the protein level. Relative to conventional aqueous CE, HOCE-MS did a better job of discovering hydrophobic peptides and provided more peptide and protein identifications. Relative to nano-LC-MS, it achieved comparable peptide and protein identification performance and detected peptides not identified by LC-MS: of the full set of peptides identified using the two techniques, 19% were identified only using HOCE-MS. It also outperformed nano-LC-MS with respect to the detection of low molecular weight peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.