Abstract
Investigations on the bottom-up fabrication of graphene nanostructures with 10, 10’-dibromo-9, 9’-bianthryl (DBBA) as a precursor on Ru were carried out using scanning tunnelling microscopy (STM) and density functional theory (DFT) calculations. Upon annealing the sample at submonolayer DBBA coverage, N = 7 graphene nanoribbons (GNRs) aligned along the direction form. Higher DBBA coverage and higher annealing temperature lead to the merging of GNRs into ribbon-like graphene nanoflakes with multiple orientations. These nanoflakes show different Moiré patterns, and their structures were determined by DFT simulations. The results showed that GNRs possess growth preference on the Ru substrate with a rectangular unit cell, and GNRs with armchair and zigzag boundaries are obtainable. Further DFT calculations suggest that the interaction between graphene and the substrate controls the orientations of the graphene overlayer and the growth of graphene on Ru.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.