Abstract

Efficient activation of substrates as an orthogonal pathway for facilitating CO2 fixation into cyclic carbonates, poses ongoing challenges for the ingenious design and development of heterogeneous cooperative catalysts. Herein, a bottom-up strategy was employed to stepwise graft chloromethyl, triethylenediamine (DABCO), and chloroethylamine onto the organic linkers, forming bicationic ionic liquid tethered to MIL-101(Cr). The introduced –NH2 and quaternary ammonium groups dangling within the micro-mesopores ensured the fast enrichment and polarization of CO2 molecules, while the inherent unsaturated Cr3+ sites bonded with the epoxides to promote the simultaneous activation. The ample Cl- counter-anions further nucleophilically attacked to proceed the ring opening process, triggering an upgradation in catalytic performance for cycloaddition. After optimized by the response surface methodology (RSM), a chloropropene carbonate (CPC) yield of 97.8 % with a selectivity of 99.3 % were attained over the developed Cl[TNH2]Cl@MIL-101(Cr) at mild conditions (104.5 °C, 1.07 MPa, 3.75 wt% of catalyst, 1.91 h) in the absence of any solvent or co-catalyst. Furthermore, Cl[TNH2]Cl@MIL-101(Cr) displayed good durability, universality, and recyclability. The synergy of multiple sites was testified by the in-situ DRIFTS spectra and DFT calculations, and thus the potential catalytic mechanism was deduced. The implement of this work could shed some lights on the rational assembling of robust IL@MOFs nanocomposites and offered novel avenues for the fabrication of high-efficiency catalysts for practical CO2 conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.