Abstract

The development of chiral covalentorganic framework catalysts (CCOFs) to synthesize enantiopure organic compounds is crucial and highly desirable in synthetic chemistry. Photocatalytic asymmetric reactions based on CCOFs are eco-friendly and sustainable while they are still elaborate. In this work, we report a general bottom-up strategy to successfully synthesize several photoactive CCOFX (X = 1-5 and 1-Boc). The photoactive porphyrin building blocks are selected as knots and various secondary-amine-based chiral catalytic centers are immobilized on the pore walls of CCOFX through a rational design of benzoimidazole linkers. The porphyrin units act as light-harvesting antennae to generate photo-induced charge carriers for the activation of bromide during the photocatalytic asymmetric alkylation of aldehydes. Meanwhile, various aldehydes are activated by the chiral secondary amine to form the target products with a high yield (up to 97%) and ee value (up to 93%). The results significantly expand the scope to predesign CCOF photocatalysts for visible-light-driven asymmetric catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.