Abstract
Three-dimensional integrated packaging with through-silicon vias (TSV) can meet the requirements of high-speed computation, high-density storage, low power consumption, and compactness. However, higher power density increases heat dissipation problems, such as severe internal heat storage and prominent local hot spots. Among bulk materials, diamond has the highest thermal conductivity (≥2000 W/mK), thereby prompting its application in high-power semiconductor devices for heat dissipation. In this paper, we report an innovative bottom-up Cu electroplating technique with a high-aspect-ratio (10:1) through-diamond vias (TDV). The TDV structure was fabricated by laser processing. The electrolyte wettability of the diamond and metallization surface was improved by Ar/O plasma treatment. Finally, a Cu-filled high-aspect-ratio TDV was realized based on the bottom-up Cu electroplating process at a current density of 0.3 ASD. The average single-via resistance was ≤50 mΩ, which demonstrates the promising application of the fabricated TDV in the thermal management of advanced packaging systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.