Abstract

Living composites comprising of both biotic and abiotic modules are shifting the paradigm of materials science, yet challenges remain in effectively converging their distinctive structural and functional attributes. Here we present a bottom-up hybridization strategy to construct functionally coherent, electrochemically active biohybrids with optimal mass/charge transport, mechanical integrity, and biocatalytic performance. This biohybrid can overcome several key limitations of traditional biocarrier designs and demonstrate superior efficiency in metabolizing low-concentration toxic ions with minimal environmental impact. Overall, this work exemplifies a biointegration strategy that complements existing synthetic biology toolsets to further expand the range of material attributes and functionalities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.