Abstract

We introduce the Iceberg-CUBE problem as a reformulation of the datacube (CUBE) problem. The Iceberg-CUBE problem is to compute only those group-by partitions with an aggregate value (e.g., count) above some minimum support threshold. The result of Iceberg-CUBE can be used (1) to answer group-by queries with a clause such as HAVING COUNT(*) >= X, where X is greater than the threshold, (2) for mining multidimensional association rules, and (3) to complement existing strategies for identifying interesting subsets of the CUBE for precomputation. We present a new algorithm (BUC) for Iceberg-CUBE computation. BUC builds the CUBE bottom-up; i.e., it builds the CUBE by starting from a group-by on a single attribute, then a group-by on a pair of attributes, then a group-by on three attributes, and so on. This is the opposite of all techniques proposed earlier for computing the CUBE, and has an important practical advantage: BUC avoids computing the larger group-bys that do not meet minimum support. The pruning in BUC is similar to the pruning in the Apriori algorithm for association rules, except that BUC trades some pruning for locality of reference and reduced memory requirements. BUC uses the same pruning strategy when computing sparse, complete CUBEs. We present a thorough performance evaluation over a broad range of workloads. Our evaluation demonstrates that (in contrast to earlier assumptions) minimizing the aggregations or the number of sorts is not the most important aspect of the sparse CUBE problem. The pruning in BUC, combined with an efficient sort method, enables BUC to outperform all previous algorithms for sparse CUBEs, even for computing entire CUBEs, and to dramatically improve Iceberg-CUBE computation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.