Abstract
Nanofabrication of heteroatom-doped metal oxides into a well-defined architecture via a "bottom-up" approach is crucial to overcome the boundaries of the metal oxides for energy storage systems. In the present work, this issue was addressed by developing sulfur-doped bimetallic cobalt tungstate (CoWO4 ) porous nanospheres for efficient hybrid supercapacitors via a single-step, ascendable bottom-up approach. The combined experimental and kinetics studies revealed enhanced electrical conductivity, porosity, and openness for ion migration after amendments of the CoWO4 via sulfur doping. As a result, the sulfur-doped CoWO4 nanospheres exhibited a specific capacity of 248.5 mA h g-1 with outstanding rate capability and cycling stability. The assembled hybrid supercapacitor cell with sulfur-doped CoWO4 nanospheres and activated carbon electrodes could be driven reversibly in a voltage of 1.6 V and exhibited a specific capacitance of 177.25 F g-1 calculated at 1.33 A g-1 with a specific energy of 63.41 Wh kg-1 at 1000 W kg-1 specific power. In addition, the hybrid supercapacitor delivered 94.85 % initial capacitance over 10000 charge-discharge cycles. The excellent supercapacitive performance of sulfur-doped CoWO4 nanospheres may be credited to the sulfur doping and bottom-up fabrication of the electrode materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.