Abstract
Local failure modes associated with bottom-mounted penetration nozzles are examined as a part of research on sever accident management. Conventional creep rupture studies on reactor vessel lower head during a meltdown accident were based on an excessively simplified shear deformation model. In the present study, the mode of nozzle failures is investigated using data and nozzle materials from Sandia National Laboratory’s Lower Head Failure Experiment (SNL-LHF). Crack-like separations were revealed at the nozzle weld metal to RPV interfaces indicating the importance of normal stress component rather than the shear stress in the creep rupture. Creep rupture tests were conducted for nozzle and weld metal materials, respectively, at various temperature and stress levels. Stress distribution in the nozzle region is calculated using elastic-viscoplastic finite element analysis (FEA) using the measured properties. Calculation results are compared with earlier results based on the pure shear model of TMI-2 VIP. It has been concluded from both LHF-4 nozzle examination and FEA that normal stress at the nozzle/lower head interface is the dominant driving force for the local failure with its likelihood significantly greater than previously assumed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.