Abstract

Telechelic polymers are effective rheological modifiers that bridge between associative constituents to form elastic networks. The performance of linear telechelic chains, however, is controlled by entropic forces and thus suffers from an upper limit on bridge formation. This work overcomes this limitation by utilizing telechelic triblock copolymers containing bottlebrush midblocks. By comparing the rheological properties of emulsions linked by telechelic bottlebrush polymers to those containing linear chains, we determined that telechelic polymers with bottlebrush midblocks form elastic networks more efficiently. These enhanced rheological properties arise from the high stiffness of the bottlebrush midblocks, which offsets the entropic stretching penalty for bridge formation, enabling them to more readily form networks. This molecular-level control over polymer conformation in complex fluids opens avenues for designing highly elastic networks with minimal polymeric additives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.