Abstract

Botrytis cinerea is responsible for the gray mold disease on more than 200 host plants. This necrotrophic ascomycete displays the capacity to kill host cells through the production of toxins, reactive oxygen species and the induction of a plant-produced oxidative burst. Thanks to an arsenal of degrading enzymes, B. cinerea is then able to feed on different plant tissues. Recent molecular approaches, for example on characterizing components of signal transduction pathways, show that this fungus shares conserved virulence factors with other phytopathogens, but also highlight some Botrytis-specific features. The discovery of some first strain-specific virulence factors, together with population data, even suggests a possible host adaptation of the strains. The availability of the genome sequence now stimulates the development of high-throughput functional analysis to decipher the mechanisms involved in the large host range of this species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.