Abstract

BackgroundActivation of the complement system plays an important role in the regulation of immune and inflammatory reactions, and contributes to inflammatory responses triggered by envenomation provoked by Bothrops snakes. The present study aimed to assess whether Bothrops jararacussu and Bothrops pirajai crude venoms and their isolated toxins, namely serine protease (BjussuSP-I) and L-amino acid oxidase (BpirLAAO-I), modulate human complement system pathways.MethodsLyophilized venom and toxin samples solubilized in phosphate buffered saline were diluted in appropriate buffers to evaluate their hemolytic activity on the alternative and classical pathways of the complement system. Venom- and toxin-treated normal human serum was added to the erythrocyte suspension, and the kinetic of hemolysis was measured spectrophotometrically at 700 nm. The kinetic 96-well microassay format was used for this purpose. We determined the t½ values (time required to lyse 50 % of target erythrocytes), which were employed to calculate the percentage of inhibition of the hemolytic activity promoted by each sample concentration. To confirm complement system activation, complement-dependent human neutrophil migration was examined using the Boyden chamber model.ResultsAt the highest concentration tested (120 μg/mL), B. jararacussu and B. pirajai crude venoms inhibited the hemolytic activity of the classical pathway (65.3 % and 72.4 %, respectively) more strongly than they suppressed the hemolytic activity of the alternative pathway (14.2 and 13.6 %, respectively). BjussuSP-I (20 μg/mL) did not affect the hemolytic activity of the classical pathway, but slightly decreased the hemolytic activity of the alternative pathway (13.4 %). BpirLAAO-I (50 μg/mL) inhibited 24.3 and 12.4 % of the hemolytic activity of the classical and alternative pathways, respectively. Normal human serum treated with B. jararacussu and B. pirajai crude venoms induced human neutrophil migration at a level similar to that induced by zymosan-activated normal human serum.ConclusionTogether, the results of the kinetics of hemolysis and the neutrophil chemotaxis assay suggest that pre-activation of the complement system by B. jararacussu and B. pirajai crude venoms consumes complement components and generates the chemotactic factors C3a and C5a. The kinetic microassay described herein is useful to assess the effect of venoms and toxins on the hemolytic activity of the complement system.

Highlights

  • Activation of the complement system plays an important role in the regulation of immune and inflammatory reactions, and contributes to inflammatory responses triggered by envenomation provoked by Bothrops snakes

  • In order to broaden the existing knowledge on the biological properties of Bothrops snake venom, the present study aims to assess whether B. jararacussu (Bjussu) crude venom and its serine protease (BjussuSP-I), as well as B. pirajai (Bpir) crude venom and its L-amino acid oxidase (LAAO) (BpirLAAO-I), modulate the human complement system (CS) pathways

  • To assess whether Bjussu and Bpir crude venoms and the isolated toxins BjussuSP-I and BpirLAAO-I modulate the hemolytic activity of the CS, we measured the residual hemolytic activity of CS in sera treated with these samples, using the kinetic microassay

Read more

Summary

Introduction

Activation of the complement system plays an important role in the regulation of immune and inflammatory reactions, and contributes to inflammatory responses triggered by envenomation provoked by Bothrops snakes. The present study aimed to assess whether Bothrops jararacussu and Bothrops pirajai crude venoms and their isolated toxins, namely serine protease (BjussuSP-I) and L-amino acid oxidase (BpirLAAO-I), modulate human complement system pathways. Bothrops snake venoms trigger a typical local inflammatory response that involves edema and the subsequent mobilization of leukocytes. It is still not clear how Bothrops snake venoms elicit leukocyte recruitment, which is essential to restore tissue homeostasis and repair the injured sites. Bothrops venoms are a complex mixture of components including phospholipases A2, metalloproteases, serine proteases (SPs) and L-amino acid oxidases (LAAOs) that exert different pharmacological and biochemical activities [4,5,6]. The possible participation of snake venom SPs and LAAOs in the course of the inflammatory response, including activation of the CS, should not be discarded [5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call