Abstract

The thrombin inhibitor, bothrojaracin [Zingali, R. B., Jandrot-Perrus, M., Guillin, M. C., & Bon, C. (1993) Biochemistry 32, 10794-10802], is a 27 kDa protein isolated from the venom of Bothrops jararaca that blocks several thrombin functions, including fibrinogen clotting, platelet activation, and fibrin and thrombomodulin binding, but does not interact with the catalytic site. In the present report, we show that the high affinity binding of alpha-thrombin to immobilized bothrojaracin (Kd = 0.6 nM) is inhibited by the C-terminal peptide of hirudin and that the gamma-cleavage within exosite 1 reduces the affinity of bothrojaracin for thrombin (Kd = 0.3 microM), indicating that bothrojaracin binding to exosite 1 is a major determinant of the thrombin-bothrojaracin interaction. In addition, we show that bothrojaracin decreases the rate of inhibition of alpha- and gamma-thrombin by the antithrombin III-heparin complex. Competition of bothrojaracin with heparin or prothrombin fragment 2 for binding to thrombin indicates that bothrojaracin not only binds exosite 1 but also binds exosite 2 or in close proximity. Bothrojaracin binds to the thrombin precursor, prothrombin. This interaction is calcium-independent and is prevented by heparin, suggesting that it is mediated by exosite 2. Bothrojaracin inhibits platelet activation induced by clot-bound thrombin and slowly dissociates thrombin from the fibrin clots. Altogether, our results indicate that the high affinity of bothrojaracin for thrombin is supported by a double-site interaction and results in an efficient inhibition of both soluble and clot-bound thrombin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call