Abstract

Reelin-stimulated tyrosine phosphorylation of the Dab1 adaptor protein is required during brain development for Reelin-dependent neuron positioning in the cerebral cortex and various other laminated regions. Dab1 contains an amino-terminal PTB/PI domain through which it can bind to Reelin receptors and membrane phosphoinositides. The relative contributions of these binding activities were unknown. Here, we identify a mutation in the PTB domain of Dab1 that inhibits membrane localization without inhibiting receptor binding. In neurons, this mutation reduces both basal and Reelin-stimulated Dab1 tyrosine phosphorylation. In contrast, a mutation that inhibits receptor binding reduces Reelin-stimulated but not basal tyrosine phosphorylation. These results support a model in which phospholipids recruit Dab1 to membranes but do not play a direct role in relaying the Reelin signal, while direct Dab1–receptor interaction is responsible for relaying the Reelin signal but not for membrane recruitment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.