Abstract

Concentrations of cadmium and lead in blood (BCd and BPb, respectively) are traditionally used as biomarkers of environmental exposure. We estimated the influence of genetic factors on these markers in a cohort of 61 monozygotic and 103 dizygotic twin pairs (mean age = 68 years, range = 49-86). BCd and BPb were determined by graphite furnace atomic absorption spectrophotometry. Variations in both BCd and BPb were influenced by not only environmental but also genetic factors. Interestingly, the genetic influence was considerably greater for nonsmoking women (h(2) = 65% for BCd and 58% for BPb) than for nonsmoking men (13 and 0%, respectively). The shared familial environmental (c(2)) influence for BPb was 37% for men but only 3% for women. The association between BCd and BPb could be attributed entirely to environmental factors of mutual importance for levels of the two metals. Thus, blood metal concentrations in women reflect not only exposure, as previously believed, but to a considerable extent hereditary factors possibly related to uptake and storage. Further steps should focus on identification of these genetic factors and evaluation of whether women are more susceptible to exposure to toxic metals than men.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.