Abstract

Vachellia karroo (formerly Acacia karroo) is a wide-spread legume species indigenous to southern Africa. Little is known regarding the identity or diversity of rhizobia that associate with this plant in its native range in South Africa. The aims of this study were therefore: (i) to gather a collection of rhizobia associated with V. karroo from a wide range of geographic locations and biomes; (ii) to identify the isolates and infer their evolutionary relationships with known rhizobia; (iii) to confirm their nodulation abilities by using them in inoculation assays to induce nodules under glasshouse conditions. To achieve these aims, soil samples were collected from 28 locations in seven biomes throughout South Africa, which were then used to grow V. karroo seedlings under nitrogen-free conditions. The resulting 88 bacterial isolates were identified to genus-level using 16S rRNA sequence analysis and to putative species-level using recA-based phylogenetic analyses. Our results showed that the rhizobial isolates represented members of several genera of Alphaproteobacteria (Bradyrhizobium, Ensifer, Mesorhizobium, and Rhizobium), as well as Paraburkholderia from the Betaproteobacteria. Our study therefore greatly increases the known number of Paraburkholderia isolates which can associate with this southern African mimosoid host. We also show for the first time that members of this genus can associate with legumes, not only in the Fynbos biome, but also in the Albany Thicket and Succulent Karoo biomes. Twenty-six putative species were delineated among the 88 isolates, many of which appeared to be new to Science with other likely being conspecific or closely related to E. alkalisoli, M. abyssinicae, M. shonense, and P. tropica. We encountered only a single isolate of Bradyrhizobium, which is in contrast to the dominant association of this genus with Australian Acacia. V. karroo also associates with diverse genera in the Grassland biome where it is quite invasive and involved in bush encroachment. Our findings therefore suggest that V. karroo is a promiscuous host capable of forming effective nodules with both alpha- and beta-rhizobia, which could be a driving force behind the ecological success of this tree species.

Highlights

  • Vachellia karroo (Banfi and Galasso, 2008; Kyalangalilwa et al, 2013) is a legume tree species belonging to the mimosoid clade, which is an informal group nested within the newly recircumscribed Caesalpinioideae subfamily (LPWG, 2017)

  • This study investigated the root nodule bacteria of V. karroo sampled across a broad geographical area in South Africa, spanning sites in six provinces and seven biomes

  • Our results revealed that taxonomically diverse bacteria from both the Alpha- and Betaproteobacteria, occupy the root nodules of this legume

Read more

Summary

Introduction

Vachellia karroo (formerly Acacia karroo) (Banfi and Galasso, 2008; Kyalangalilwa et al, 2013) is a legume tree species belonging to the mimosoid clade, which is an informal group nested within the newly recircumscribed Caesalpinioideae subfamily (LPWG, 2017). Vachellia contains 161 species and has a pantropical distribution, 73 species can be found in Africa and Madagascar (Lewis, 2005; Kyalangalilwa et al, 2013) This is a relatively small genus when compared to the Australian endemic genus Acacia sensu stricto, which contains 1021 species (Kyalangalilwa et al, 2013). The leaves, pods and fruits have the potential to be used as fodder for ruminant livestock (Gxasheka et al, 2015; Brown et al, 2016; Dingaan and du Preez, 2018), while its flowers are important for honey production (Dingaan and du Preez, 2018). With regards to human consumption, its roasted seeds can be used as a coffee substitute and its gum in the production of sweets (Cock and van Vuuren, 2015)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call