Abstract

During exercise, beta-feedforward coronary vasodilation has been shown to contribute to the matching of myocardial oxygen supply with the demand of the myocardium. Since both beta(1)- and beta(2)-adrenoceptors are present in the coronary microvasculature, we investigated the relative contribution of these subtypes to beta-feedforward coronary vasodilation during exercise as well as to infusion of the beta(1)-agonist norepinephrine and the beta(1)- and beta(2)-agonist isoproterenol. Chronically instrumented swine were studied at rest and during graded treadmill exercise (1-5 km/h) under control conditions and after beta(1)-blockade with metoprolol (0.5 mg/kg iv) and beta(1)/beta(2)-blockade with propranolol (0.5 mg/kg iv). The selectivity and degree of beta-blockade of metoprolol and propranolol were confirmed using isoproterenol infusion (0.05-0.4 microg. kg(-1).min(-1)) under resting conditions. Isoproterenol-induced coronary vasodilation was mediated through the beta(2)-adrenoceptor, whereas norepinephrine-induced coronary vasodilation was principally mediated through the beta(1)-adrenoceptor. Exercise resulted in a significant increase in left ventricular norepinephrine release and epinephrine uptake. beta(1)-Adrenoceptor blockade with metoprolol had very little effect under resting conditions. However, during exercise, metoprolol attenuated the increase in myocardial oxygen supply in excess of the reduction in myocardial oxygen demand, as evidenced by a progressive decrease in coronary venous Po(2). Consequently, metoprolol caused a clockwise rotation of the relationship between myocardial oxygen consumption and coronary venous Po(2). Additional beta(2)-adrenoceptor blockade with propranolol further inhibited myocardial oxygen supply during exercise, resulting in a further clockwise rotation of the relationship between myocardial oxygen consumption and coronary venous Po(2). In conclusion, both beta(1)- and beta(2)-adrenoceptors contribute to the beta-feedforward coronary resistance vessel dilation during exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.