Abstract

Host-plant volatiles play vital roles for insects to locate foraging, mating, and oviposition sites in the environment. As one of the devastating invasive forestry pests, Hyphantria cunea causes a great annual loss in China, and understanding its chemical ecology is an important task. The current research was done in terms of chemical analysis, electrophysiology, and behavioral assays on H. cunea to assess its olfactory reception toward host-plant volatiles. A screen of possible common host volatiles was done, targeting on five favored hosts of H. cunea, harvesting six potential bioactive compounds from a total of 78 odorant components. Six types of antennal sensilla were investigated on their distributions on the antennae, and sexual dimorphism was described. H. cunea showed responses to all selected host-related volatiles in electroantennogram tests, and linalyl butyrate elicited the strongest responses. Furthermore, mating rates in adult pairs that are exposed to dibutyl phthalate and phytol have been significantly increased, while oviposition rates and female fecundity were not influenced. The results of the current study provide initial evidence showing that universal host-derived volatile cues are essential for H. cunea moth in terms of mating, which can also provide insights into the development of botanical attractants.

Highlights

  • In recent years, there have been extensive studies on the role of plant-derived compounds that regulate interactions between herbivorous insects and their host plants (Joseph and Carlson, 2015; Bisch-Knaden et al, 2018; Turlings and Erb, 2018; Guo and Wang, 2019)

  • Most of the components existed in only one to two blends, but phytol and α-linolenic acid were observed in the GC-MS traces of all five blends from M. alba, F. chinensis, P. alba, A. altissima, and M. spectabilis. α-Linolenic acid occupied the highest proportion of 17.73 ± 5.6% in the volatiles, and phytol was the second highest at 10.6 ± 4.9%

  • The present electron microscopy study demonstrated that both sexes of H. cunea contain six different types of sensilla on their antenna, including sensilla trichodea, sensilla chaetica, sensilla basiconica, sensilla coeloconica, sensilla squamiformia, and sensilla böhm bristles, which revealed identical observations with previous studies (Zhang et al, 2019)

Read more

Summary

Introduction

There have been extensive studies on the role of plant-derived compounds that regulate interactions between herbivorous insects and their host plants (Joseph and Carlson, 2015; Bisch-Knaden et al, 2018; Turlings and Erb, 2018; Guo and Wang, 2019). Several studies have shown that plant volatiles play a significant role in mating and host recognition in phytophagous insects by influencing antennal sensitivities to chemical components (Xu et al, 2001; Reed and Landolt, 2002; Natale et al, 2004; Bleeker et al, 2011; Gundappa et al, 2016). Several studies have shown that the chemical composition of host plant plays an integral part in mating and oviposition behaviors in various insects, including Lepidoptera, Hemiptera, and Coleoptera (Shelly, 2001; Paschen et al, 2012; Juma et al, 2016)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.